

Open Hardware Security

Framework
A ​MUST ​​ for Mission Critical IoT Applications

By: Alex Karasulu
CEO/Founder, OptDyn

Professor Miguel Diogenes Matrakas

Manager of Celtab, Latin American Center of Open Technologies
Itaipu Technological Park

22 March 2018

 https://optdyn.com/

Projects Overview
Mission critical industrial applications, especially those involving the Internet of Things (IoT) require hardware
based security capabilities above and beyond the base trusted computing platform. The suite of hardware
projects in this proposal fill in these gaps to provide an ultra secure computing environment specifically needed
for IoT gateways in all mission critical sectors: i.e. national power grids, defense, aerospace, and financial 1

sectors. Furthermore, the independent, and open nature of these FOSSH projects protect governments and
institutions from all kinds of malicious actors including state sponsored cyber warfare programs.

Rationale and Drivers
With all its inspiring advantages, the Internet of Things (IoT), also brings legitimate security concerns with
increased device connectivity. Security experts have warned the U.S. congress of the consequences (“the
serious risk to life and property”) of the increasing numbers of poorly secured devices on the Internet of Things
. These concerns increase dramatically, especially as the liabilities resulting from system compromises 2

increase. It is reasonable to presume that many mission critical sectors will indefinitely defer or completely
avoid any IoT rollout until absolutely certain that IoT security levels approach that of present day closed-loop
(unconnected) systems.

The latest and most promising advances in the primitives used to build intrusion detection and prevention
systems require fast hardware implementations for their feasible applicability. Software based approaches
introduce too much latency and slow down processing to the point where systems become absolutely
unusable. These techniques involve line rate stream (fuzzy) scanning for polymorphic malware and real time
introspection into the processing system that trap malicious operations during execution. Respectively, the
techniques referred to are context triggered piecewise hashing (​CTPH​), and dynamic information flow tracking
(​DIFT​). Subprojects elaborate on how these critical primitives for intrusion detection and prevention systems
could be feasibly implemented using hybrid processing systems (SoCs) with FPGA material on the same chip.

The timing for this hardware security framework proposal is optimal. ARM recently announced and published
its Platform Security Architecture (​PSA​) which now provides even more robust foundations to support the
higher level security functions proposed here. Intel started shipping Xeon processors with FPGA fabric on the
same die to support hardware acceleration in the data center and consequently in the cloud. The entire value
chain from IoT devices to cloud applications can now be protected using the same framework across multiple
architectures.

1 The framework can and should also be applied to mission critical server systems in the data center. This is possible now
due to the availability of Intel’s Xeon+FPGA processors and Amazon’s F1 FPGA instances.
2 ​Security experts warn congress that the Internet of Things could kill people

 2

http://www.forensicswiki.org/wiki/Context_Triggered_Piecewise_Hashing
https://en.wikipedia.org/wiki/Information_flow_(information_theory)
https://developer.arm.com/products/architecture/platform-security-architecture
https://www.technologyreview.com/s/603015/security-experts-warn-congress-that-the-internet-of-things-could-kill-people/

 https://optdyn.com/

Without these enhanced hardware security features to protect systems, organizations providing mission critical
services and products will delay or abandon IoT efforts. At best, their IoT agenda will remain a fringe research
topic or a talking point for marketing presentations.

Projects and Relationships
The diagram below shows the high level components of the hardware security architecture in gray. The blue
block represents the FPGA based platforms on which components will be developed for (minus the TPM
module):

The dependency relationships are top down. For example the hardware IPS depends on the ​Stream
Coprocessor and the ​DIFT Coprocessor​. Both these components depend on their underlying platform which in
turn depends on the TPM used.

Implementation Platforms
There are two primary platforms: an ARM based embedded system platform for low power IoT gateways in the
field, and a Xeon based server platform for cloud applications in data centers. Both platforms carry
programmable logic cells on the same die in conjunction with hard processor cores with debugging interfaces
to introspect processing without impacting performance. Both also provide extensive security primitives to
simplify and reduce the effort to implement the higher layers. The ARM based Xilinx Zynq SoC provides the
ideal power to processing ratios for IoT gateways, while Xeon Scalable is perfect for HPC and cloud workloads
in the data center. Both platforms cover the full value chain from IoT gateway to the IoT based cloud
applications that leverage them.

 3

 https://optdyn.com/

Trusted Platform Module
This is an optional subproject to locally manufacture an open and discrete TPM device that implements TPM
functionality, and nothing else, in its own tamper proof semiconductor package. Although several commercial
TPM device manufacturers already exist, every national IT security effort should require local manufacturing
under government scrutiny to prevent state actors from compromising TPM endorsement keys which are
generated and burned into the silicon during manufacturing. If this key is compromised the entire system can
be compromised.

If local commercial manufacturers already exist, then there’s no need for implementing this project. Simply
auditing their processes would suffice. If a local provider does not exist, this project should be started
immediately. To distribute risk and lower costs multiple countries can combine resources to produce an open
project or support an existing open TPM project such as the ​OpenTPM Project​.

 Integrated TPMs

Intel provides its own integrated TPM inside some processor models often referred to as Intel Platform Trust
Technology (PTT). The endorsement key pair’s private key is burned into the processor die during the
manufacturing process. The private key should never be collected or recorded. With ever more corporate
cooperation with national security agencies, there’s no way to determine if these keys are kept to compromise
foreign systems for intelligence gathering purposes. If these keys are compromised, then even non-state actors
could potentially tamper with mission critical systems.

At a minimum, the security framework ​MUST provide a TPM interface which can switch the underlying
implementation based on the availability of TPM devices. The TPM interface should prefer external discrete
TPM implementations if both an integrated and discrete TPM implementation are present on the system.
Obviously any TPM is better than no TPM, so the facade should fall back to using an integrated TPM if that is
the only available option.

Other Projects
The three other topmost projects, the hardware IPS, ​Stream Coprocessor​, and the ​DIFT Coprocessor​, are
described in their own dedicated sections to follow. They’re the primary components which add the enhanced
security capabilities to the primitives offered by the underlying platforms.

 4

http://opentpm.com/

 https://optdyn.com/

Stream Coprocessor
Pattern matching is a fundamental operation required by almost every computing discipline. It is the basis to
lexical analysis and parsing which is needed for virtually everything from protocols, to file formats, to languages
and even intrusion detection and prevention systems.

 Any slight advance or advantage in stream pattern matching has the ability to dramatically impact all
other areas that depend on it.

Latency and Software
It is no longer sufficient to find patterns in stationary data once it comes to rest. Patterns in flowing streams
must be matched while data is in motion, and this must occur at line rate to prevent the introduction of latency.
Sometimes streams in transit should be trapped or dropped to prevent security breaches before malware
enters a system or before unauthorized sensitive information can exit from it.

I/O rates have been steadily increasing to the point where software based solutions simply cannot keep up and
they unnecessarily overload the main system processing units. Data marshalling, serialization and
deserialization occurs all the time and up to 30% of the CPU cost is consumed with these operations. Data
marshalling over high speed streams could easily overwhelm any software based solution. Significant latency
is introduced by software at the mercy of the kernel scheduler under load.

Hardware Investment
It is very expensive to solve a problem using hardware. Before making the decision to do so you have to
consider the return on the investment. It is wise to get answers to the following questions:

● Will it amortize to recover the investment?
● Will it solve problems when software no longer can?
● Is it applicable to a wide range of problems, so its utility and ROI can justify the investment over time?

Traditional processors are generic work pistons optimized for branch prediction logic used to execute
procedural code. Processors are not optimized to filter or match patterns against data streams. There's at least
two orders of magnitude of performance lost by executing software on generic processors to match patterns in
data streams versus using custom pattern matching hardware. The processor has to execute program
instructions, which in turn loads data from the stream, performs comparisons, and switches state to continue
processing inputs. That's a lot of layers to match a pattern in a low level data stream.

 5

 https://optdyn.com/

A pattern matching engine is an ideal candidate for using a dedicated coprocessor architected
specifically to provide the common and ubiquitous function of pattern matching over data streams.

Increasing I/O rates make it impossible to use software only solutions without introducing unpredictable
amounts of latency. Processes share time on the CPU using context switching and this could prevent the
program from being able to process I/O in time to prevent delays. This is a major problem with networking
applications and real time systems. This is also the reason why most enterprise switches and routers use
FPGA hardware instead of software only solutions.

Answers to the key hardware acceleration questions are all affirmative for the case of a stream pattern
matching coprocessor. It is well worth the investment. In fact, it's perhaps a necessity considering the line
rates and the inability to keep up with them using software. This use case for hardware acceleration is an
ideal example of a focused optimization to a very common problem.

Hardware based I/O throttling could also be performed by the stream processor while pattern
matching on data streams. This is an important capability especially for multi-tenancy in cloud systems.
Software unlike hardware may not be able to react in a timely fashion due to context switching and
ensure tenants properly receive their share of network and disk bandwidth. Bandwidth should be
treated like any other resource. It should be throttled across cloud tenants to prevent deprivation in the
presence of greedy consumers.

Applications
The Stream Coprocessor could be applied to several problems across a wide range of disciplines and
industries. We cannot possibly envision them all. However there are some sweet spots that constantly involve
stream processing and pattern matching. Computing areas that benefit most are networking, security, cloud,
storage and as a consequence big data analytics systems. The accelerator can even be used to hardware
accelerate UNIX tools like grep and AWK.

 Say goodbye to the data diode or air gap fiasco

Many sectors use data diodes and airgap systems to control data flows from connected networks to sensitive
mission critical systems. These tools are heavily used and are still required by the defense industry: it’s a NATO
requirement for mission critical defense systems.

 6

 https://optdyn.com/

In combination with the intrusion prevention system proposal, the coprocessor has the ability to detect and stop
the flow of malware across systems and storage devices in real-time. It obsoletes the data diode and the air
gap used in mission critical systems. The coprocessor effectively makes the packet the minimum unit of data
trapped for approval by an air gap.

The coprocessor is ideal for detecting and indexing content in high end flash storage devices such as
Solid State Drives (SSD) and ​Open Channel Solid State Drives​. When embedded into the device, the
coprocessor can automatically maintain indices into data blocks without involving the main processing
system. Storage devices themselves can conduct primitive search queries in parallel to push indexing and
search activities deep down into peripheral storage instead of shuffling data back and forth between the
main processing system across peripheral connect buses. The application of the stream coprocessor will
have a profound impact on the performance of big data systems. The overwhelming IoT data tsunami
resulting from billions of connected devices requires big data analytics acceleration and analytics on data
in motion (data streams).

How does it work?
The primary output of this project is a hardware based stream pattern matching coprocessor. The heart of
the coprocessor contains an engine based on a binary adaptation of the Aho-Corasick string matching
algorithm. The coprocessor context switches between streams based on the availability of I/O. Production
rules in ​Backus Naur form use regular expressions to define complex patterns in streams. A paged state
machine transition table enables the application of a limitless number of patterns on any given stream.

The coprocessor should be available on both server side big iron Intel platforms and embedded systems
serving as IoT gateways on ARM. It will be used in conjunction with the ​DIFT Coprocessor to implement
the Hardware Based Intrusion Prevention System. All components will be designed to operate on both
ARM and Xeon FPGA based PS/PL systems.

Aho-Corasick Algorithm

The ​Aho-Corasick string pattern matching algorithm is used by the command line UNIX grep command. It
is also used by the ​AWK programming language (also invented by Alfred Aho, alongside Peter
Weinberger, and Brian Kernighan at Bell Labs).

AWK essentially adds procedural logic to combine the application of regular expressions on streams
of input. It glues regular expressions to build more complex stream processing systems. It is the
procedural equivalent of declarative production rules.

 7

https://openchannelssd.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/AWK

 https://optdyn.com/

A binary version of the Aho-Corasick string pattern matching algorithm will be implemented in hardware as
the engine forming the core of the coprocessor. The engine executes Mealy State Machines in (a
page-able) tabular form while consuming byte stream input. These state machines represent regular
expressions specifying binary patterns. Higher level translation tables apply character sets or other kinds
of encodings to the binary representations executed by the engine. The engine uses registers to track
stream position and the current state of the state machine executed on the stream much like a traditional
processor’s program counter.

Stream Context Switching
To be of any real world use, the coprocessor should be able to concurrently service an unlimited number
of data streams without performance degradation. As long as resources permit there should be no limit to
the number of streams that could be multiplexed using time slices on the coprocessor. Any kind of stream
time scheduling should consider I/O availability to prevent the wasteful allocation of the coprocessor on
streams without available I/O.

So long as the I/O does not overwhelm the bandwidth limitations of the coprocessor, there should be
no significant decline in stream processing performance as the number of streams increase.

Before switching from one stream to another, the coprocessor must save the state of regular expressions
on streams being processed. It either loads or initializes (if new) the context of the next stream with
available I/O into its registers to begin to process regular expressions on it. This is very similar to the way
a normal processor deals with a program context switch.

Complex Pattern Combinations

If limited by the number of patterns it could match on a data stream, the coprocessor would be ineffective
in most real world use cases. The same is true when it comes to combining patterns to represent complex
patterns. There should be enough flexibility to define language productions if desired. That is, if desired, it
should be possible to implement complex lexers and parsers.

There should be no limit to the number and combination of patterns matched by the engine on any
given stream.

 8

 https://optdyn.com/

The engine will execute state machines representing patterns or combinations of patterns which can be
logically combined. These pattern combinations will be specified using productions in Backus Naur form:
extended or augmented may be supported. This will provide sufficient flexibility to match any language,
protocol or format in a stream using a grammar.

Paged Transition Tables
Patterns (the regular expressions and their combinations) are compiled into deterministic finite state
machines. A nondeterministic finite automaton is first generated using ​Thompson's Construction
Algorithm​, followed by a powerset construction and reduction. The final representation is a storage
efficient sparse state transition matrix in a page-able table.

The engine accesses state transition data stored in a table backed by block memory in the FPGA. This
allows for very quick access however BRAM is very limited, and can best be used as a primary cache for
state transition data. The number of patterns matched against a stream would be extremely limited if
BRAM was the only state transition store.

There should be little degradation in stream processing performance as the number of patterns
matched against a stream increases. And there should be no limit to the number of patterns that could
be used to match against a stream.

This is why the BRAM must act as the primary cache. On a cache miss, state transition tables will be
paged in from the secondary cache, which will most likely be processing system main memory. The
primary storage for pattern state transition tables will be non-volatile storage (disk or flash). A simple
indexed file format (a primitive b+tree db) on the non-volatile storage may be needed for random access
to quickly lookup the needed transition tables.

Linux Integration and Ecosystem
The coprocessor functionality is exposed to user space processes through system calls. Device handlers
and kernel modules provide the underlying infrastructure to interface with the coprocessor in the PL. The
usage semantics would be very similar to the epoll() system call. File descriptors are registered along with
patterns to match on IO. Instead of raw IO notifying processes, the detection of patterns in the stream
notifies processes of an available match.

This entails the use of a specific operating system. We will target Linux and perhaps optionally an

 9

https://en.wikipedia.org/wiki/Thompson's_construction
https://en.wikipedia.org/wiki/Thompson's_construction

 https://optdyn.com/

existing open RTOS implementation available for both Xilinx Zynq for ARM and on Xeon FPGA for Intel.

The subsystem would be enabled if the proper configuration is detected. If on a Xilinx Zynq or Xeon FPGA
the system could load and enable the proper drivers and kernel modules to activate the system API.

Mainline Kernel Contribution
The system has great potential as a mainline kernel contribution to extend the capabilities of the Linux
Operating System. It's general purpose application makes acceptance by Linus highly probable. The
spread of FPGA based SoCs and Intel's new Xeon processor with FPGA will make the widespread use of
such a pattern matching coprocessor possible. Meaning this is not a proposal for a niche application and
has extreme utility on the latest systems already being sold in the market.

Linaro Participation
David Rusling is an ARM fellow and distinguished engineer. He is also the CTO of Linaro and on the
board of ​OptDyn advisors​.

We've already discussed the prospect of including the coprocessor system API in the Linaro distribution
which flows straight into the Linux Kernel mainline.

DIFT Coprocessor
Information Flow Tracking (IFT) is a data flow tracking technique promising comprehensive security
vulnerability protection. Dynamic Information Flow Tracking (DIFT) uses tags to dynamically track any flow
in the system. This enables the detection of inconsistent and illegal conditions giving rise to several
families of vulnerabilities including:

● Command Injection
● Authentication and Authorization Bypass
● Format String Attacks
● Cross-site Scripting
● Buffer Overflows
● SQL Injection
● Directory Traversal

 10

https://optdyn.com/management.html

 https://optdyn.com/

The primary output of this project is a zero overhead hardware DIFT implementation using a monitoring
software IP core as coprocessor in the PL of the Zynq SoC. All components in the system will operate in
the PL in parallel to monitor and track data flow to trap illegal conditions leading to vulnerabilities.

The project aims to require no bytecode instrumentation, nor source code instrumentation for tag
introduction. Unlike the research in ​Appendix A this project aims to also avoid static analysis to be a fully
transparent hardware DIFT implementation. Instead an inference engine in the Coprocessor will be used
to dynamically deduce the results of static analysis.

The coprocessor will be implemented on an ARM UltraScale Zync SoC and on the Intel Scalable
processor families. In terms of operating systems we will support Linux and at least one open RTOS
operating system. These two hardware platforms and operating systems should enable us to secure and
satisfy most if not all use cases.

Previous Research
The potential of such techniques were discovered by OptDyn while researching alternative mechanisms to
implement United States Patent 7,971,255 on ​"​Detecting and preventing malcode execution​​" by Alfred
Aho​.

 United States Patent 7,971,255 Abstract

A system for detecting and halting execution of malicious code includes a kernel-based system call interposition
mechanism and a libc function interception mechanism. The kernel-based system call interposition mechanism
detects a system call request from an application, determines a memory region from which the system call
request emanates, and halts execution of the code responsible for the call request if the memory region from
which the system call request emanates is a data memory region. The libc function interception mechanism
maintains an alternative wrapper function for each of the relevant standard libc routines, intercepts a call from
an application to one or more libc routines and redirects the call into the corresponding alternative wrapper
function.

NOTE​​: Ironically this is the very same Alfred Aho from Columbia University whose Aho-Corasick
Algorithm we are implementing in hardware with the ​Aho-Corasick Coprocessor project. This algorithm is
the cornerstone of several technologies. Obviously pattern matching for recognition (detection) is the first
step to prevention.

 11

http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7971255.PN.&OS=PN/7971255&RS=PN/7971255
http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7971255.PN.&OS=PN/7971255&RS=PN/7971255
http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7971255.PN.&OS=PN/7971255&RS=PN/7971255
http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7971255.PN.&OS=PN/7971255&RS=PN/7971255
http://172.16.10.68:4567/wiki/Aho-Corasick-Coprocessor

 https://optdyn.com/

Hardware is a ​MUST

Research shows that software DIFT implementations perform 25-37x slower than their untracked original
systems. Software solutions require bytecode modifications and some access to the source code.
Software solutions are too inefficient and intrusive to be feasible.

A series of recent research in the past 2-3 years shows that only hardware based solutions are viable.
Hardware solutions themselves were shown to be very difficult to implement until recently on FPGA SoC
platforms that combine hard cores monitored by coprocessors in the programmable logic (PL) of the SoC.
See ​Appendix A for DIFT research conducted on the Xilinx Zynq-7000 series SoC published in June of
2016.

This same DIFT Coprocessor architecture is portable to the Intel Xeon with FPGA platform. Debugging
interfaces for processor introspection as with ARM's CoreInsight exists for the Intel platform. This and the
fact that it completely removes almost all overheads from the processing system by operating in parallel
on the PL side make it the most attractive approach. Other hardware approaches exist in the state of the
art, however they consume an entire hard core and have far too many moving parts which further
complicates implementations.

Intel and the University of California have conducted alternative research on implementing hardware
based DIFT using multi-core processing systems with a core dedicated to DIFT calculations. The core is
responsible for performing information flow tracking operations.

Hardware Based Intrusion Prevention System
This project represents both a host and network intrusion detection and prevention system. The output of
this project is an order of magnitude more efficient, more accurate, and faster network and host intrusion
detection and prevention system than anything currently available on the market today. It is a combined
hardware and software solution that relies on the Aho-Corasick ​Stream Coprocessor and the ​DIFT
Coprocessor​ components specified earlier.

Fuzzy Hashing

The engine will detect polymorphic malware using the latest context based fuzzy hashing algorithms.
These fall into the class of fuzzy hashing techniques called Context Triggered Piecewise Hashing (CTPH).

 12

 https://optdyn.com/

Most intrusion detection mechanisms use cryptographic hashes which do not have the flexibility of
handling shape shifting malware.

For example, much like a real virus, a digital polymorphic virus or worm can change its shape folding into
itself and use compression to be unidentifiable. Like the immune system of the body, anti-malware
systems must relearn about the threat to prevent infection.

Targeting Sequences in Streams
Specific attention will be applied to identifying packer instruction sequences and other relatively slow
changing regions of polymorphic malware.

To a large extent fuzzy hashing driven by the modified Aho-Corasick Coprocessor can easily detect these
sequences. Context triggered piecewise hashing mechanisms apply hashes to regions of a byte stream to
calculate their fuzzy hashes. To do so requires a degree of pattern matching and parsing to find and
target those regions for applying the hashing algorithms. The ​Aho-Corasick Coprocessor will be used to
find such regions in streams in real time without latency introduction.

Whatever makes it through will get trapped by the DIFT Coprocessor on execution. This will automatically
modify the threat database and update it’s identifying hash sequences which allows the fuzzy hashing
mechanism to catch it or any other mutated descendants before entering the system.

The fuzzy hashing based detection algorithms will be implemented in hardware. The intrusion detection
system has the ability to detect and trap malware long before it has a chance to infect the running system.
Another important characteristic of a hardware solution is to operate at line rate independently of the main
processing system. The input output rates of networks and storage devices have increased so much that
a software solution alone is not feasible without introducing significant latency.

Unlike traditional software based scanning solutions which must churn the disk, or slow down the network,
this solution works as the data is flowing and is event driven.

The design specifically targets stream based operation. From where the stream originates or goes should
make no difference to how the mechanism operates. The stream may come from locally attached storage,
or from the network: the user maybe accessing a file from a newly attached USB storage device or is
visiting a website page over the Internet. Regardless of the source or the sink, the filtration mechanism
should work in the same way.

 13

http://172.16.10.68:4567/wiki/Aho-Corasick-Coprocessor

 https://optdyn.com/

CRITS Integration

CRITS is a threat database designed for social collaboration. By leveraging the knowledge of threats
across a population of systems, greater knowledge of potential attacks are gained without the risk of
experiencing them.

CRITS works with multiple security systems to capture threat information including the signatures of the
malware vectors used for the attack. These signatures are tracked and shared across a global network of
CRITS databases for communal threat intelligence.

These fuzzy hashing algorithms will allow for more accurate detection and threat information sharing via
CRITS. We will integrate the system with CRITS to improve threat detection algorithms. However unlike
the standard mechanisms of detection propagation in CRITS, we have the ability to propagate detection
through gossip protocols based on locality.

SIEM Integration
Command and control of millions of devices is essential especially where threats can arise and spread rapidly.
SIEM integration is critical to detect abnormal behavior after calibrating to a normal baseline.

Apache Metron is a highly scalable advanced security analytics framework build by the Apache Hadoop
Community. It is an open source project at the ​Apache Software Foundation​. It evolved from Cisco's
OpenSoC project which was open sourced and contributed to the Apache Software Foundation.

Apache Metron forms the basis to intelligent analysis of site wide threat intelligence and anomaly
detection. It is the software used to establish a security operations center (SOC) which reacts to threats.
Every IoT deployment needs a SOC to monitor and respond to threats. This is a clear management and
maintenance requirement for all organizations with mass IoT deployments.

Apache Metron will be configured to interoperate with the intrusion prevention system. This will allow
security operations to take full advantage of the framework at the organizational level. This also implies
the integration of CRITS to produce the most comprehensive threat intelligence system available.

 14

http://metron.incubator.apache.org/
http://apache.org/

 https://optdyn.com/

Machine Learning

Apache Metron already has machine learning algorithms design for institution wide anomaly detection. We
also see the potential for machine learning capabilities at the level of each node in the system. If not
extensive at least inferences can feed directly into the Apache Metron SIEM intakes.

Total Remote Attestation

The Trusted Platform Module specifications talk about remote attestation capabilities. These are very low
level capabilities that specifically attest the integrity of the system’s boot process. The Trusted Platform
Module do not attest the system's overall integrity during runtime. A higher level remote attestation
framework (RAF) in concert with an IPS is needed to cover all host components and subsystems. These
frameworks usually provide the higher level file verification and system verification functions with secure
network communications for systems to remotely confirm integrity before transacting with external
systems.

Small devices and sensors in an IoT deployment need to be able to query their gateway to determine if it
is compromised before using it to pass sensitive information or take commands to drive an actuator.

This is where the TPM->IPS->RAF connection is crucial for complete overall remote attestation. Several
frameworks already exist and are based on the Linux Security Module of the Linux Kernel. These
frameworks build on top of this kernel module and often interact directly with a TPM device. We're
proposing the involvement of the IPS as an intermediary with a custom IPS-RAF implementation.

Open Source Approach

This is a big system with already existing open source components. It makes sense to participate in
multiple consortia to pool know how and resources to realize at least parts of the overall intrusion
prevention system. The parts will be broken down into separate distinct open source projects. These
sub-projects should be hosted under the umbrella of organizations like:

● The Linux Foundation
● The Apache Software Foundation
● Linaro
● Mitre

 15

 https://optdyn.com/

Several Apache Software Foundation projects are used to implement Apache Metron. Metron is the top
level security operations center product and interface to system wide monitoring. It rolls up SIEM
information collected from all nodes in a large system and performs the necessary analytics to achieve
threat intelligence. It will be modified for operation with CRITS to leverage threat information from several
sites in a global threat intelligence network.

The ARM Linux system interfaces belong in the Linux Kernel. They're going to make there way into the
Kernel through the ARM Linux consortium, Linaro. Participants should become members of Linaro and
collaborate directly with ARM. There may also be potential for collaboration with Xilinx specifically since
one of the target hardware platforms is the latest Xilinx UltraScale Zynq SoC family.

We've already discussed the prospect of including the Aho-Corasick Stream Coprocessor system API in
the Linaro distribution which flows straight into the Linux Kernel mainline.

Appendix A - State of the Art Hardware DIFT Research
The following research paper was recently submitted on June 2016 by Muhammad Abdul Wahab, Pascal
Cotret, Mounir Nasr Allah, Guillaume Hiet, Vianney Lapotre, and Guy Gogniat. It shows their preliminary
research on developing a hardware based DIFT implementation on the Zync-7000 SoC platform. The
paper is directly available ​here on the Web​.

 16

https://hal-centralesupelec.archives-ouvertes.fr/hal-01311045/file/2016_socsip_wahab.pdf

 https://optdyn.com/

 17

 https://optdyn.com/

 18

 https://optdyn.com/

Appendix B - Project Proposal Copyright Notice
This project summary and all other projects proposed in this cyber security hardware suite are the
intellectual property of OptDyn, Inc incorporated in the State of Delaware, USA.

Copyright © 2018 OptDyn, Inc.

 19

